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Some properties of a uniform fluid sphere in 
general relativity 

A BANERJEE? 
Laboratoire de Physique Theorique Associt au CNRS, 
Institut Henri Poincare, Paris 5 ,  France 

MS received 24 February 1972, in revised form 5 May 1972 

Abstract. We present here a method to obtain a class of exact solutions for uniform fluid 
spheres surrounded by empty space. It is shown that in some cases there is a reversal in the 
motion of contraction or expansion of the sphere, while in other cases there is no bouncing 
at all. 

1. Introduction 

In the literature there are some well known interior solutions for the adiabatic spherically 
symmetric motion of a perfect fluid of uniform matter density but nonuniform pressure 
(Bonnor and Faulks 1967, Bondi 1969, Thompson and Whitrow 1968). In the present 
paper, however, we consider a specific model of such a sphere surrounded by empty 
space and discuss its dynamical behaviour. The conditions governing the different 
states of the sphere's motion can be expressed in terms of the Schwarzschild mass 
and the initial values of Ro,  R,, and central pressure, where Ro is the Schwarzschild 
radius of the sphere. In some cases the motion of contraction or expansion is reversed 
and in certain other cases the motion of the sphere has no bounce at all. There are, 
however, no oscillations in the model under consideration. Matching of the interior 
solutions with the exterior Schwarzschild metric at the boundary can be done by the 
procedure of Raychaudhuri (1953). 

2. Integration of the field equations and the conditions for a realistic model 

We consider the line element in the isotropic form 

ds2 = e' dt2 - ep(dr2 + r2 de2 + r2 sin28 d42) (1) 
where v and p are functions of time as well as the radial coordinate. The components of 
the energy-momentum tensor are 

T i  = p TI4 = 0 (2) T i  = T i  = = - p  
because the pressure is isotropic and comoving coordinates are used. The divergence 
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relations T;; = 0 gives two equations 

p ' =  -q 2 P + dl?' 
and 

( 3 )  

(4) p = -1 2 ( P  + P)P. 

e - " P 2  = A(t) ( 5 )  

Integrating the field equations one obtains, in view of the fact that p = p(t)  

where A(t )  is an arbitrary function of time. Also 

where f and @ are arbitrary functions of time alone and 

@ + A  = y n p .  ( 7 )  

One of the functions @ and A is, however, determined if the matter distribution is known. 
It is evident from (3), (5) and (6) in view of Raychaudhuri's argument (1955) that at any 
instant v' and consequently p' are of the same sign everywhere. We are, however, inter- 
ested in the case where pressure monotonically decreases with r inside the fluid sphere 
and vanishes at its boundary ( r  = r,,). 

Since p = 0 at  r = r o ,  one can get after integration of (4) at the boundary 

p = ,!je-+po (8) 

that is 

where fi  = (3/4n)(m/r& m being the usual Schwarzschild mass of the sphere. It follows, 
therefore, from (3), (4), ( 5 ) ,  (6) and (7) that: 

and 

Since p' is negative 

(b+A)(fb-@f) < 0. 

In the following we have considered only positive values of 0; f is necessarily positive 
in view of (6). Remembering the relation (13) and the fact that ( p + p )  is always positive 
even at the origin ( r  = 0) we get 

6 f b  
@ f @  2 - > - > -  
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for contraction where p > 0, or in other words p < 0. In this case both @/@ and f /  f are 
positive. Again for expansion ( p  < 0 or fi > 0) we get by the same argument 

O f @  
@ f @  2 - < - < -  (14') 

where both @/@ and f /  f are negative. The relations (14) and (14') can also be written in 
the form 

3. Behaviour in a special case 

Let us consider a relation 

f = @a 

that is 

- f @  
f 

where cc is a constant and 1 < c( < 2 from (15). Thus using (16) one gets 

4@" 
e' = (@,"r2 + @/4)2 

(@'r; + @/4)3 
P = $b @3a/2 ' 

Again for convenience normalizing the value of e' at the origin ( r  = 0) so that e" = 1 at 
r = 0 (that is, identifying t as the proper time of an observer permanently at the centre) 
we get 

where @ satisfies the relation 

which implies 

The equality sign corresponds to 
finite values of @. Calling 

= 0 which, in other words, means 6 = 0 for 
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we easily get 

It is evident from (22) that for a > 4, 'j' tends to infinity as 
and (23) shows that dy/do = 0 only when 

approaches zero or infinity 

1 (32-2) r;=------ 
40,'" - ($2 - 1) 

The minimum value of 'y' is thus given by 

So for a > 4 three different situations arise according to whether ymin is greater than. 
equal to, or less than 1. These different conditions are, however, dependent on different 
relative values of the Schwarzschild mass (m) and the comoving radius of the boundary 
( r o ) .  

Figure 1. Curve of J) against @ for three different cases. (a) jmin > 1 : ( b )  J',,, = 1 : ( e )  Jmln < 1. 

3.1. Case ( i )  ( j g u r e  l a )  

ymin > 1 and in view of (20) 6 is real and nonzero for all finite values of @. The y-@ 
curve does not touch or intersect the line y = 1 at all. So in such a case the system may 
start from the infinite dilution stage (0 + 0) and collapse to the singularity of zero proper 
volume (infinite proper density, 0 + CO) or the reverse may also occur depending on the 
sign of the initial 6. 

3.2. Case ( i i )  (figure l b )  

ymin = 1 and in view of (20) 6 = 0 only at the point where the y -0  curve touches the line 
y = 1, otherwise it is real and nonzero. The system at this stage (6 = 0) is in unstable 
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equilibrium. The slightest perturbation in the direction of contraction will lead to a 
catastrophic collapse or the slightest expansion will finally lead to the infinite dilution 
stage. 

3.3. Case (iii) ( j g u r e  IC) 
ymin < 1 and & is imaginary between CDl and CD2 where CD, and CD2 are the values of CD 
at the points of intersection of the y 4  curve with the line y = 1. These points of inter- 
section are the turning points of the motion of the sphere because here & changes sign. So 
either the system may start from infinite dilution, contract and bounce back; or the 
system explodes from the initial singularity of infinite proper density, reaches the 
maximum volume and again collapses to the singularity. 

Again for a < 4, ‘y’ increases with CD and the curve intersects the line y = 1 only at a 
single point where & = 0. Thus the system may explode from the initial singularity and 
again collapse to zero proper volume after reaching the turning point. But on the other 
hand the system which once starts to contract cannot be halted and the collapse con- 
tinues up to the final singularity. The case a < $, however, is to be distinguished from 
the case a = 4 .  In the former case & = 0 (that is Ro = 0) for some finite time, while in 
the latter case it is not necessarily so depending on the initial conditions, because in this 
case as CD -+ 0, ‘y’ tends to some finite quantity n/48& 

4. Matching of the interior solutions to the Schwarzschild metric 

The interior solutions given above can be shown to be continuous at the boundary with 
the outside Schwarzschild metric by the procedure of Raychauduri (1953). Details of 
such a procedure are omitted here. 

Putting e”’ = t” and x = In r one can obtain on integration of the field equations 
remembering that the metric and its first derivatives are continuous at the boundary and 
also that there is no singularity at the origin (r  = 0) 

m being the Schwarzschild mass calculated in the form m = $np(g and A(t )  being equal to 
e-”fi2. 

Therefore the field in empty space ( r  2 ro)  is given by 

where ( is the solution of equation (25). The transformation to the Schwarzschild metric 
can be obtained by the relations 

R = r2  = 

and 

where R and Tare the well known Schwarzschild radial and time coordinates. 
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5. Conclusions 

The present paper considers what is, in effect, a special cask of a more general equation 
derived by Thompson and Whitrow (1968 to  be referred to as TW). They may be com- 
pared if one identifies the symbols p, v, @, f, l/r, and /i’ of our paper with i,, \J, 16BC, 
4C2, k and 3k6K2/8x  respectively of TW. The special case which we consider in equation 
(16) of our paper is equivalent to a relation between B and C of TW in the form 

where 1 = 22+3/n  and ‘n’ can be expressed in the symbols used in our paper as 
n = ( 2 -  cr)/2(a - 1). In TW an equation in the physical parameters of the system is 
derived and the specific solutions are obtained from the consideration that the material 
at the centre obeys the polytropic equation pt” = constant, where U is an element of 
volume and y is a constant. In view of the relation (26) the Schwarzschild radius of the 
sphere in our case R,  is given in the notation of TW as 

(u/n - 1 )  + 

uln 
R ,  = 0 127) 

where U = p / p  is evaluated at the centre and 0 is a constant. 0 can in turn be identified 
with(l/2r~)(4r~)(32-2)12(rI-1)in our paper, wherer, is thecoinovingradiusofthe boundary 
of the sphere. In view of (27) the polytropic index y in our case turns out to be equal to 
.( 1 +(1/3n)+(2/3u)} which is no longer a constant. Substituting (27) in the equation (37) 
of TW and integrating yields 

where I/ = (u/n- 1 ) .  However, since the equation (16) of our paper is equivalent to a 
condition on the integral o f ( 3 7 )  of TW, it follows that the integration constant h must be 
equal to  and the condition that h is not arbitrary in our case implies that the initial 
data (that is R,, fro, central pressure) cannot be specified arbitrarily resulting in the fact 
that oscillations are ruled out. 

On putting h = 3 in (28) we get 

which is exactly equivalent to (20) of our paper. 
It is to be noted that one can distinguish the various cases of motion (cases (i), (ii) and 

(iii)) discussed previously, in terms of the Schwarzschild mass and the initial values of 
R , ,  I?, and central pressure as well. For instance ymin in equation (24) of our paper is 
equivalent to (27m/20) (1 -n)”-’/(n +2)”+’ where 0 can be obtained from the relation 
(27)in terms of the Schwarzschild mass and the initial values of R ,  and the central pressure 
and the three different cases mentioned previously correspond to  the condition that 
(27m/20)(1 -n)”-l/(n+2)”+’ is greater than, equal to, or less than 1. 
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